Travelling Salseman Problem

Travelling Salseman Problem

- In travelling salseman problem a salse person visit each \& every city exactly once\& return to original city.
- A tour to be simple path that starts \& ends at vertex 1.
- Every tour consists of an edge(1,k) for some $k € \operatorname{V}-\{1\}$ and a path from vertex k to vertex 1.
- The path from vertex k to vertex in $v-\{1, k\}$ exactly once.
- It is easy to see that if the tour is optimal , then the path from k to 1 must be a short test k to 1 path going through all vertices in V-\{1,k\}.

TSP(Continues..)

- Let $g(i, s)$ be the length of a shortest path starting at vertex I, going through all vertices all vertices in s and terminates at vertex 1 .
- The function $\mathrm{g}(1, \mathrm{v}-[1])$ is the length at vertex I , going through all vertices in s and terminating at vertex 1 .
- The function $\mathrm{g}(1, \mathrm{v}-\{1\})$ is the length of an optimal salseperson tour.

TSP

- This problem can be formulated as
- $g(1, v-\{1\})=\min \{c 1 k+g(k, v-\{1, k\})\}$.
- (Note minimum is $2<=k<=n$)
- Generalizing 1, we obtain
- $\mathrm{G}(\mathrm{i}, \mathrm{s})=\min \left\{\mathrm{c}_{\mathrm{ij}}+\mathrm{g}(\mathrm{j}, \mathrm{s}-\{\mathrm{j}\})\right\}$
- (Note: minimum is j€S

TSP

- Example:
$\left.\begin{array}{cccc}0 & 5 & 7 & 8 \\ 2 & 0 & 3 & 5 \\ 8 & 9 & 0 & 10 \\ 12 & 13 & 11 & 0\end{array}\right]$

- To calculate $g(1,[2,3,4])=$? We apply the formula
- $g(1, v-\{1\})=\min \{c 1 k+g(k, v-\{1, k\})\}$
- $g(i, s)=m i n j € s\left\{c_{i j}+g(j, s-\{j\})\right\}$.
- Updating eq.(2) we get
- $g(i, \phi)=C_{i 1}, 1<=i<=n$
- Thus
$g(2, \phi)=C_{21}=2$
$g(3, \phi)=C_{31}=8$
$\mathrm{g}(4, \phi)=\mathrm{C}_{41}=12$
- $g(2,\{3\})=\min \left\{\mathrm{C}_{23}+\mathrm{g}(3,\{3\}-\{3\})\right\}$
- (Note min is $3 €\{3\}$)
- $\mathrm{g}(2,\{3\})=\min \left\{\mathrm{C}_{23}+\mathrm{g}(3, \phi)\right\}$

$$
\begin{aligned}
& =C_{23}+g(3, \phi) \\
& =C_{23}+C 31 \\
& =3+8=11
\end{aligned}
$$

$g(2,\{4\})=\min \left\{\mathrm{C}_{24}+\mathrm{g}(4,\{4\}-\{4\})\right\}$

- (Note min is $3 €\{3\}$)
- $g(2,\{3\})=\min \left\{\mathrm{C}_{24}+\mathrm{g}(4, \phi)\right\}$

$$
\begin{aligned}
& =C_{24}+g(4, \phi) \\
& =C_{24}+C_{41} \\
& =5+12=17
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathrm{g}(3,\{2\}) & =C_{32}+\mathrm{g}(2, \phi) \\
& =C_{32}+C_{21}=9+2=11
\end{aligned}
$$

$$
g(3,\{4\})=C_{34}+g(4, \phi)
$$

$$
=C_{34}+C_{41}=10+12=22
$$

$$
g(4,\{2\})=C_{42}+g(2, \phi)
$$

$$
=C_{42}+C_{21}=13+2=15
$$

$$
g(4,\{3\})=C_{41}+g(3, \phi)
$$

$$
=C_{43}+C_{31}=11+8=19
$$

Next we compute $g(i, s)$ with $|s|=2, i \neq 1$,
$g(i, s)=\min j \notin s\left\{c_{i j}+g(j, s-\{j\})\right\}$
$g(2,\{3,4\})=\min \left\{C_{23}+g\left(3,\{3,4]-\{3\}, C_{24}+g(4,\{3,4\}-\{4\})\right\}\right.$
$=\min \left\{\mathrm{C}_{23}+\mathrm{g}(3,\{4\}), \mathrm{C}_{24}+\mathrm{g}(4,\{3\})\right\}$
$=\min \{3+22,5+19\}=\min \{26,24\}=24$
$g(3,\{2,4\})=\min \left\{C_{32}+g\left(2,\{2,4]-\{2\}, C_{34}+g(4,\{2,4\}-\{4\})\right\}\right.$
$=\min \left\{\mathrm{C}_{32}+\mathrm{g}(2,\{4\}), \mathrm{C}_{34}+\mathrm{g}(4,\{2\})\right\}$
$=\min \{9+17,10=15\}=\min \{26,25\}=25$
$g(4,\{2,3\})=\min \left\{C_{42}+g(2,\{3\}), C_{43}+g(3,\{2\})\right\}$
$=\min \{13+11,11+11\}=\min \{24,22\}=22$
Finally from(1) we obtain
$g(1,\{2,3,4\})=\min \{C 12+g(2,\{3,4\}), C 13+g(3,\{2,4\}), C 14+g(4,\{2,3\})\}$ $=\mathrm{MIN}\{29,32,30\}=29$
An optimal tour for given graph is 29

Application

- Computer wiring
- Vehicle routing
- Clustering

Scope of research

- Polynomial Time Solvable Variations

Assignment

- Q.1)What is Travelling Salseman problem?
- Q.2)Explain travelling Salseman problem with example

